Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas

Paleobiology ◽  
2002 ◽  
Vol 28 (2) ◽  
pp. 184-207 ◽  
Author(s):  
J. Alistair Crame

We still have much to learn about the evolution of taxonomic diversity gradients through geologic time. For example, have latitudinal gradients always been as steep as they are now, or is this a phenomenon linked to some form of Cenozoic global climatic differentiation? The fossil record offers potential to address this sort of problem, and this study reconstructs latitudinal diversity gradients for the last (Tithonian) stage of the Jurassic period using marine bivalves. At this time of relative global warmth, bivalves were cosmopolitan in their distribution and the commonest element within macrobenthic assemblages.Analysis of 31 regional bivalve faunas demonstrates that Tithonian latitudinal gradients were present in both hemispheres, though on a much smaller magnitude than today. The record of the Northern Hemisphere gradient is more complete and shows a steep fall in values at the tropical/temperate boundary; the Southern Hemisphere gradient exhibits a more regular decline in diversity with increasing latitude.Tithonian latitudinal gradients were underpinned by a tropical bivalve fauna that comprises almost equal numbers of epifaunal and infaunal taxa. The epifaunal component was dominated by three pteriomorph families, the Pectinidae, Limidae and Ostreidae, that may be regarded as a long-term component of tropical bivalve diversity. Of the mixture of older and newer “heteroconch” families that formed the bulk of the infaunal component, the latter radiated spectacularly through the Late Cretaceous and Cenozoic to dominate tropical bivalve faunas at the present day. This pulse of heteroconch diversification, which was a major cause of the steepening of the bivalve latitudinal gradient, provides important evidence that rates of speciation may be negatively correlated with latitude.Nevertheless, we cannot exclude the possibility that elevated extinction rates in the highest latitudes also contributed to the marked steepening of bivalve latitudinal gradients over the last 150 Myr. Rates of extinction within epifaunal bivalve taxa appear to have been higher in these regions through the Cretaceous period, but this was largely before any significant global climatic deterioration. Infaunal bivalve clades have had differential success over this time period in the polar regions. Whereas, in comparison with the Tropics, heteroconchs are very much reduced in numbers today, the anomalodesmatans are much better represented, and the protobranchs have positively thrived. We are beginning to appreciate that low temperature per se may not be a primary cause of elevated rates of extinction. Food supply may be an equally important control on both rates of speciation and extinction; those bivalves that have been able to adapt to the extreme seasonality of food supply have flourished in the polar regions.

Paleobiology ◽  
2017 ◽  
Vol 43 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Matthew G. Powell ◽  
Douglas S. Glazier

AbstractExtensive investigation of the close association between biological diversity and environmental temperature has not yet yielded a generally accepted, empirically validated mechanism to explain latitudinal gradients of species diversity, which occur in most taxa. Using the highly resolved late Cenozoic fossil records of four major taxa of marine plankton, we show that their gradients arise as a consequence of asymmetric geographic range expansion rather than latitudinal variation in diversification rate, as commonly believed. Neither per capita speciation nor extinction rates trend significantly with temperature or latitude for these marine plankton. Species of planktonic foraminifera and calcareous nannoplankton that originate in the temperate zone preferentially spread toward and arrive earlier in the tropics to produce a normal gradient with tropical diversity peaks; by contrast, temperate-zone originating species of diatoms and radiolarians preferentially spread toward and arrive earlier in polar regions to produce reversed gradients with high-latitude diversity peaks. Our results suggest that temperature affects latitudinal diversity gradients chiefly by its effect on species’ range limits rather than on probabilities of speciation and extinction. We show that this mechanism also appears to operate in various multicellular taxa, thus providing a widely applicable explanation for the origin of latitudinal diversity gradients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Turk ◽  
Simona Kralj-Fišer ◽  
Matjaž Kuntner

AbstractHeterogeneity in species diversity is driven by the dynamics of speciation and extinction, potentially influenced by organismal and environmental factors. Here, we explore macroevolutionary trends on a phylogeny of golden orbweavers (spider family Nephilidae). Our initial inference detects heterogeneity in speciation and extinction, with accelerated extinction rates in the extremely sexually size dimorphic Nephila and accelerated speciation in Herennia, a lineage defined by highly derived, arboricolous webs, and pronounced island endemism. We evaluate potential drivers of this heterogeneity that relate to organisms and their environment. Primarily, we test two continuous organismal factors for correlation with diversification in nephilids: phenotypic extremeness (female and male body length, and sexual size dimorphism as their ratio) and dispersal propensity (through range sizes as a proxy). We predict a bell-shaped relationship between factor values and speciation, with intermediate phenotypes exhibiting highest diversification rates. Analyses using SSE-class models fail to support our two predictions, suggesting that phenotypic extremeness and dispersal propensity cannot explain patterns of nephilid diversification. Furthermore, two environmental factors (tropical versus subtropical and island versus continental species distribution) indicate only marginal support for higher speciation in the tropics. Although our results may be affected by methodological limitations imposed by a relatively small phylogeny, it seems that the tested organismal and environmental factors play little to no role in nephilid diversification. In the phylogeny of golden orbweavers, the recent hypothesis of universal diversification dynamics may be the simplest explanation of macroevolutionary patterns.


2018 ◽  
Vol 11 (9) ◽  
pp. 4981-5006 ◽  
Author(s):  
Christian Borger ◽  
Matthias Schneider ◽  
Benjamin Ertl ◽  
Frank Hase ◽  
Omaira E. García ◽  
...  

Abstract. Volume mixing ratio water vapour profiles have been retrieved from IASI (Infrared Atmospheric Sounding Interferometer) spectra using the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) processor. The retrievals are done for IASI observations that coincide with Vaisala RS92 radiosonde measurements performed in the framework of the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) in three different climate zones: the tropics (Manus Island, 2° S), mid-latitudes (Lindenberg, 52° N), and polar regions (Sodankylä, 67° N). The retrievals show good sensitivity with respect to the vertical H2O distribution between 1 km above ground and the upper troposphere. Typical DOFS (degrees of freedom for signal) values are about 5.6 for the tropics, 5.1 for summertime mid-latitudes, 3.8 for wintertime mid-latitudes, and 4.4 for summertime polar regions. The errors of the MUSICA IASI water vapour profiles have been theoretically estimated considering the contribution of many different uncertainty sources. For all three climate regions, unrecognized cirrus clouds and uncertainties in atmospheric temperature have been identified as the most important error sources and they can reach about 25 %. The MUSICA IASI water vapour profiles have been compared to 100 individual coincident GRUAN water vapour profiles. The systematic difference between the data is within 11 % below 12 km altitude; however, at higher altitudes the MUSICA IASI data show a dry bias with respect to the GRUAN data of up to 21 %. The scatter is largest close to the surface (30 %), but never exceeds 21 % above 1 km altitude. The comparison study documents that the MUSICA IASI retrieval processor provides H2O profiles that capture the large variations in H2O volume mixing ratio profiles well from 1 km above ground up to altitudes close to the tropopause. Above 5 km the observed scatter with respect to GRUAN data is in reasonable agreement with the combined MUSICA IASI and GRUAN random errors. The increased scatter at lower altitudes might be explained by surface emissivity uncertainties at the summertime continental sites of Lindenberg and Sodankylä, and the upper tropospheric dry bias might suggest deficits in correctly modelling the spectroscopic line shapes of water vapour.


2020 ◽  
Author(s):  
Javer A. Barrera ◽  
Rafael P. Fernandez ◽  
Fernando Iglesias-Suarez ◽  
Carlos A. Cuevas ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (


2015 ◽  
Vol 282 (1819) ◽  
pp. 20151589 ◽  
Author(s):  
Alyssa R. Cirtwill ◽  
Daniel B. Stouffer ◽  
Tamara N. Romanuk

Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.


BioScience ◽  
2019 ◽  
Vol 69 (11) ◽  
pp. 867-876 ◽  
Author(s):  
Michaela Schratzberger ◽  
Martijn Holterman ◽  
Dick van Oevelen ◽  
Johannes Helder

Abstract Free-living nematodes, an ancient animal phylum of unsegmented microscopic roundworms, have successfully adapted to nearly every ecosystem on Earth: from marine and freshwater to land, from the polar regions to the tropics, and from the mountains to the ocean depths. They are globally the most abundant animals in sediments and soils. In the present article, we identify the factors that collectively explain the successful ecological proliferation of free-living nematodes and demonstrate the impact they have on vital sediment and soil processes. The ecological success of nematodes is strongly linked to their ability to feed on various food sources that are present in both sediments and soils, and to proliferate rapidly and survive in contrasting environmental conditions. The adaptations, roles, and behaviors of free-living nematodes have important implications for the resilience of sediments and soils, and for emergent animal communities responding to human alterations to ecosystems worldwide.


Science ◽  
2019 ◽  
Vol 363 (6425) ◽  
pp. eaat4220 ◽  
Author(s):  
John M. Grady ◽  
Brian S. Maitner ◽  
Ara S. Winter ◽  
Kristin Kaschner ◽  
Derek P. Tittensor ◽  
...  

Species richness of marine mammals and birds is highest in cold, temperate seas—a conspicuous exception to the general latitudinal gradient of decreasing diversity from the tropics to the poles. We compiled a comprehensive dataset for 998 species of sharks, fish, reptiles, mammals, and birds to identify and quantify inverse latitudinal gradients in diversity, and derived a theory to explain these patterns. We found that richness, phylogenetic diversity, and abundance of marine predators diverge systematically with thermoregulatory strategy and water temperature, reflecting metabolic differences between endotherms and ectotherms that drive trophic and competitive interactions. Spatial patterns of foraging support theoretical predictions, with total prey consumption by mammals increasing by a factor of 80 from the equator to the poles after controlling for productivity.


Author(s):  
Christopher J. Freeman ◽  
Cole G. Easson ◽  
David M. Baker

Many species of marine sponges on tropical reefs host abundant and diverse symbiont communities capable of varied metabolic pathways. While such communities may confer a nutritional benefit to some hosts (termed High Microbial Abundance (HMA) sponges), other sympatric species host only sparse symbiont communities (termed Low Microbial Abundance (LMA) sponges) and obtain a majority of their C and N from local sources. Sponge communities are widespread across large latitudinal gradients, however, and recent evidence suggests that these symbioses may also extend beyond the tropics. We investigated the role that symbionts play in the ecology of sponges from the temperate, hard-bottom reefs of Gray's Reef National Marine Sanctuary by calculating the niche size (as standard ellipse area (SEAc)) and assessing the relative placement of five HMA and four LMA sponge species within bivariate (δ13C and δ15N) isotopic space. Although photosymbiont abundance was low across most of these species, sponges were widespread across isotopic niche space, implying that microbial metabolism confers an ecological benefit to temperate sponges by expanding host metabolic capability. To examine how these associations vary across a latitudinal gradient, we also compared the relative placement of temperate and tropical conspecifics within isotopic space. Surprisingly, shifts in sponge δ13C and δ15N values between these regions suggest a reduced reliance on symbiont-derived nutrients in temperate sponges compared with their tropical conspecifics. Despite this, symbiotic sponges in temperate systems likely have a competitive advantage, allowing them to grow and compete for space within these habitats.


Sign in / Sign up

Export Citation Format

Share Document